

MySQL 5.0 Data Dictionary

MySQL 5.0 New Features Series – Part 4

A MySQL® Technical White Paper
Trudy Pelzer

March, 2005

Copyright © 2005, MySQL AB

Table of Contents

Introduction ..3
Conventions and Styles...3
Terminology Notes ..4

Using INFORMATION_SCHEMA ...4
Privileges ...4

The Tables ..5
CHARACTER_SETS Table...5
COLLATIONS Table..6
COLLATION_CHARACTER_SET_APPLICABILITY Table7
COLUMN_PRIVILEGES Table..8
COLUMNS Table...9
KEY_COLUMN_USAGE Table ...12
ROUTINES Table ..13
SCHEMA_PRIVILEGES Table..16
SCHEMATA Table...18
STATISTICS Table..18
TABLE_CONSTRAINTS Table ...20
TABLE_PRIVILEGES Table..21
TABLES Table...22
USER_PRIVILEGES Table ...25
VIEWS Table ...27

Bugs and Feature Requests ...28
Bugs...28
Feature Requests ..28

Resources...28
Source Code..28

Conclusion..29
About MySQL ...29

 Copyright © 2005, MySQL AB Page 2

Introduction

This book is for the long-time MySQL user who wants to know "what's new" in version 5. The
short answer is "stored procedures, triggers, views, and information schema". The long answer is
the MySQL 5.0 New Features series, and this book is the last in that series.

Conventions and Styles

Whenever I want to show actual code, such as something that comes directly from the
screen of my mysql client program, I switch to a Courier font, which looks different from
the regular text font. For example:

mysql> CREATE TABLE table1 (column1 INT);
Query OK, 0 rows affected (0.00 sec)

When the example is large and I want to draw attention to a particular line or phrase, I
highlight it with a double underline and a small arrow on the right of the page. For
example:

mysql> CREATE VIEW v AS
 -> SELECT column1 AS c /* view col name is c */ <--
 -> FROM table1;
Query OK, 0 rows affected (0.01 sec)

Sometimes I will leave out the mysql> and -> prompts so that you can cut the examples
and paste them into your copy of the mysql client program. (If you aren't reading the
text of this book in a machine-readable form, try looking for the script on the mysql.com
web site.)

All of the examples in this book were tested with the publicly-available alpha version of
MySQL 5.0.3 on the SuSE Linux operating system (version 9.1). By the time you read
this, the version number will be higher and the available operating systems will include
Windows, Sparc, and HP-UX. So I'm confident that you'll be able to run every example on
your own computer. But if not, well, as an experienced MySQL user you know that help
and support is always available.

A Definition and an Example

Standard SQL (SQL:2003) provides a method of accessing database metadata through a
schema called INFORMATION_SCHEMA. Until now, MySQL has provided metadata
only through a series of SHOW commands. SHOW, however, has two disadvantages:

1. SHOW commands are non-standard; they are specific to MySQL.

2. SHOW commands require that you learn an entire set of commands to be able to
access the metadata you need.

In contrast:

1. Use of INFORMATION_SCHEMA is standard SQL; thus alleviating some problems
that may occur in porting applications from one DBMS to another. For example, Microsoft

 Copyright © 2005, MySQL AB Page 3

SQL Server also supports INFORMATION_SCHEMA, while IBM DB2 supports a similar
structure, albeit with different names.

2. The tables in INFORMATION_SCHEMA can be queried via a SELECT statement, just
as regular tables can be queried; thus there is no need to learn a new set of commands
to be able to access the metadata you need.

So MySQL AB made the decision to implement support for the
INFORMATION_SCHEMA. Effective with MySQL 5.0.2, your MySQL installation will
automatically contain a schema (usually called a database in MySQL parlance) called
INFORMATION_SCHEMA; it contains a set of views that allow you to look at (but not
change) the description of your database objects just as if the descriptions are regular
SQL data. Here is an example:

mysql> SELECT table_name, table_type, engine
 -> FROM INFORMATION_SCHEMA.tables
 -> WHERE table_schema = 'tp'
 -> ORDER BY table_type ASC, table_name DESC;
+------------+------------+--------+
| table_name | table_type | engine |
+------------+------------+--------+
t2	BASE TABLE	MyISAM
t1	BASE TABLE	InnoDB
v1	VIEW	NULL
+------------+------------+--------+

Terminology Notes

Metadata refers to data about the data. For example, the name of a table and the data type of a
column is metadata. There are two other terms that are often used as synonyms for metadata:
1. Data dictionary
2. System catalog

I won't be using those terms in this book.

Using INFORMATION_SCHEMA

MySQL now has a new "database" named INFORMATION_SCHEMA. It is a virtual database
only; there will never be a need to create a file by that name, and the MySQL server itself creates
and populates the tables therein. It is not possible to USE INFORMATION_SCHEMA; nor is it
possible to UPDATE, INSERT, DELETE, or even REFERENCE the INFORMATION_SCHEMA
tables. The only action possible is SELECT.

Privileges

Accessing the INFORMATION_SCHEMA tables does not require a special privilege: the SELECT
privilege on each table is automatically granted to every user.

Thus, there is no difference between the current (SHOW) privilege requirement and the SELECT
requirement. In either case, you have to have some privilege on an object in order to see the
metadata information about that object.

 Copyright © 2005, MySQL AB Page 4

The Tables

In this section, I will describe the INFORMATION_SCHEMA tables and show you how they
compare to the results produced by the equivalent MySQL SHOW command.

CHARACTER_SETS Table

The standard SQL INFORMATION_SCHEMA.CHARACTER_SETS table shows the character
sets that are available to the current user and provides equivalent information to the MySQL-
specific SHOW CHARACTER SET statement. CHARACTER_SETS has the following columns:

• CHARACTER_SET_NAME -- shows the name of a character set which the current user may
use. This column provides the same information as the CHARSET column returned by SHOW
CHARACTER SET.

• DEFAULT_COLLATE_NAME -- shows the name of the default collation for the character set.
This column provides the same information as the DEFAULT COLLATION column returned by
SHOW CHARACTER SET.

• DESCRIPTION -- shows a descriptive name for the character set that tells you the standard
character set upon which this character set is based. This column provides the same information
as the DESCRIPTION column returned by SHOW CHARACTER SET and is not part of the
standard SQL definition. It was added to provide complete equivalence with SHOW
CHARACTER SET.

• MAXLEN -- shows the number of bytes used to store each character that belongs to the
character set. This column provides the same information as the MAXLEN column returned by
SHOW CHARACTER SET and is not part of the standard SQL definition. It was added to provide
complete equivalence with SHOW CHARACTER SET.

Here are two equivalent commands:

mysql> SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
 -> WHERE CHARACTER_SET_NAME LIKE 'latin1%'\G
************************* 1. row ************************
 CHARACTER_SET_NAME: latin1
DEFAULT_COLLATE_NAME: latin1_swedish_ci
 DESCRIPTION: ISO 8859-1 West European
 MAXLEN: 1

mysql> SHOW CHARACTER SET LIKE 'latin1%'\G
************************* 1. row *************************
 Charset: latin1
 Description: ISO 8859-1 West European
Default collation: latin1_swedish_ci
 Maxlen: 1

 Copyright © 2005, MySQL AB Page 5

COLLATIONS Table

The standard SQL INFORMATION_SCHEMA.COLLATIONS table shows the collations that are
available to the current user and provides equivalent information to the MySQL-specific SHOW
COLLATION statement. COLLATIONS has the following columns:

• COLLATION_NAME -- shows the name of a collation which the current user may use. This
column provides the same information as the COLLATION column returned by SHOW
COLLATION.

• CHARACTER_SET_NAME -- shows the name of an available character set to which the
collation applies. This column provides the same information as the CHARSET column returned
by SHOW COLLATION and is not part of the standard SQL definition. It was added to provide
complete equivalence with SHOW COLLATION.

• ID -- shows a numeric identifier for the collation/character set combination. This column
provides the same information as the ID column returned by SHOW COLLATION and is not part
of the standard SQL definition. It was added to provide complete equivalence with SHOW
COLLATION.

• IS_DEFAULT -- shows whether the collation is the default collation for the character set shown;
values are either 'YES' or 'NO'. This column provides the same information as the DEFAULT
column returned by SHOW COLLATION and is not part of the standard SQL definition. It was
added to provide complete equivalence with SHOW COLLATION.

• IS_COMPILED -- indicates whether the collation is compiled into the MySQL server; values are
either 'YES' or blank (meaning 'NO'). This column provides the same information as the
COMPILED column returned by SHOW COLLATION and is not part of the standard SQL
definition. It was added to provide complete equivalence with SHOW COLLATION.

• SORTLEN -- shows a value related to the amount of memory required to sort strings using the
collation/character set combination. This column provides the same information as the SORTLEN
column returned by SHOW COLLATION and is not part of the standard SQL definition. It was
added to provide complete equivalence with SHOW COLLATION.

Here are two equivalent commands:

mysql> SELECT * FROM INFORMATION_SCHEMA.COLLATIONS
 -> WHERE COLLATION_NAME LIKE 'latin1%'\G
************************* 1. row *************************
 COLLATION_NAME: latin1_german1_ci
CHARACTER_SET_NAME: latin1
 ID: 5
 IS_DEFAULT:
 IS_COMPILED:
 SORTLEN: 0
************************* 2. row *************************
 COLLATION_NAME: latin1_swedish_ci
CHARACTER_SET_NAME: latin1
 ID: 8
 IS_DEFAULT: Yes
 IS_COMPILED: Yes
 SORTLEN: 1
************************* 3. row *************************
...

 Copyright © 2005, MySQL AB Page 6

mysql> SHOW COLLATION WHERE COLLATION LIKE 'latin1%'\G
************************* 1. row *************************
Collation: latin1_german1_ci
 Charset: latin1
 Id: 5
 Default:
 Compiled:
 Sortlen: 0
************************* 2. row *************************
Collation: latin1_swedish_ci
 Charset: latin1
 Id: 8
 Default: Yes
 Compiled: Yes
 Sortlen: 1
************************* 3. row *************************
...

COLLATION_CHARACTER_SET_APPLICABILITY Table

The standard SQL INFORMATION_SCHEMA.
COLLATION_CHARACTER_SET_APPLICABILITY table shows the character sets that are
applicable for each collation that is available to the current user. This table has no direct MySQL
SHOW equivalent; instead, the information provided comes from the first two columns returned
by SHOW COLLATION. COLLATION_CHARACTER_SET_APPLICABILITY has the following
columns:

• COLLATION_NAME -- shows the name of a collation which the current user may use. This
column provides the same information as the COLLATION column returned by SHOW
COLLATION.

• CHARACTER_SET_NAME -- shows the name of a character set, which the current user may
use, to which the collation applies. This column provides the same information as the CHARSET
column returned by SHOW COLLATION

Here are two, roughly equivalent, commands:

mysql> SELECT * FROM
 -> INFORMATION_SCHEMA.COLLATION_CHARACTER_SET_APPLICABILITY
 -> WHERE COLLATION_NAME LIKE 'latin1%'\G
************************* 1. row *************************
 COLLATION_NAME: latin1_german1_ci
CHARACTER_SET_NAME: latin1
************************* 2. row *************************
 COLLATION_NAME: latin1_swedish_ci
CHARACTER_SET_NAME: latin1
************************* 3. row *************************
...

 Copyright © 2005, MySQL AB Page 7

mysql> SHOW COLLATION WHERE COLLATION LIKE 'latin1%'\G
************************* 1. row *************************
Collation: latin1_german1_ci
 Charset: latin1
 Id: 5
 Default:
 Compiled:
 Sortlen: 0
************************* 2. row *************************
Collation: latin1_swedish_ci
 Charset: latin1
 Id: 8
 Default: Yes
 Compiled: Yes
 Sortlen: 1
************************* 3. row *************************
...

COLUMN_PRIVILEGES Table

The standard SQL INFORMATION_SCHEMA.COLUMN_PRIVILEGES table provides information
on every column privilege granted for the current database. This table has no direct MySQL
SHOW equivalent; instead, the information provided comes from a combination of the results
returned by SHOW GRANTS and SHOW FULL COLUMNS. COLUMN_PRIVILEGES has the
following columns:

• GRANTEE -- shows the name of a user who has been granted a column privilege.

• TABLE_CATALOG -- always shows NULL, since MySQL does not support the concept of a
database catalog.

• TABLE_SCHEMA -- shows the name of the schema (i.e., the database) in which the table that
contains the column resides.

• TABLE_NAME -- shows the name of the table that contains the column on which a privilege has
been granted.

• COLUMN_NAME -- shows the name of the column on which the column privilege has been
granted.

• PRIVILEGE_TYPE -- shows the type of privilege that was granted; either 'SELECT', 'INSERT',
'UPDATE', or 'REFERENCES'.

• IS_GRANTABLE -- shows whether the privilege was granted WITH GRANT OPTION; either
'YES' or 'NO'.

 Copyright © 2005, MySQL AB Page 8

Here is an example:

mysql> SELECT * FROM
 -> INFORMATION_SCHEMA.COLUMN_PRIVILEGES\G
************************ 1. row ************************
 GRANTEE: 'peter'@'%'
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: tp
 TABLE_NAME: t1
 COLUMN_NAME: col1
PRIVILEGE_TYPE: UPDATE
 IS_GRANTABLE: NO
************************ 2. row ************************
 GRANTEE: 'trudy'@'%'
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: tp
 TABLE_NAME: t2
 COLUMN_NAME: col1
PRIVILEGE_TYPE: SELECT
 IS_GRANTABLE: YES

COLUMNS Table

The standard SQL INFORMATION_SCHEMA.COLUMNS table shows the columns that are
available to the current user and provides equivalent information to the MySQL-specific SHOW
COLUMNS statement. COLUMNS has the following columns:

• TABLE_CATALOG -- always shows NULL, since MySQL does not support the concept of a
database catalog. SHOW COLUMNS has no equivalent column.

• TABLE_SCHEMA -- shows the name of the schema (i.e., the database) in which the table that
contains an available column resides. SHOW COLUMNS has no equivalent column.

• TABLE_NAME -- shows the name of the table to which an available column belongs. SHOW
COLUMNS has no equivalent column.

• COLUMN_NAME -- shows the name of a column that may be accessed by the current user
(i.e., for which the current user has been granted a privilege). This column provides the same
information as the FIELD column returned by SHOW COLUMNS.

• ORDINAL_POSITION -- shows the ordinal position of the column in the table to which it
belongs. SHOW COLUMNS has no equivalent column.

• COLUMN_DEFAULT -- shows the column's default value. If this column is blank, the column
has no defined default value. This column provides the same information as the DEFAULT
column returned by SHOW COLUMNS.

• IS_NULLABLE -- shows whether the column may accept NULL values; either 'YES' or 'NO'. This
column provides the same information as the NULL column returned by SHOW COLUMNS.

• DATA_TYPE -- shows the column's defined data type (keyword only, not the entire definition).
This column provides some of the same information as the TYPE column returned by SHOW
COLUMNS.

 Copyright © 2005, MySQL AB Page 9

• CHARACTER_MAXIMUM_LENGTH -- shows the column's defined maximum length in
characters. This column provides some of the same information as the TYPE column returned by
SHOW COLUMNS.

• CHARACTER_OCTET_LENGTH -- shows the column's defined maximum length in octets.
SHOW COLUMNS has no equivalent column.

• NUMERIC_PRECISION -- shows, for a column with a numeric data type, the column's defined
precision; otherwise NULL. This column provides some of the same information as the TYPE
column returned by SHOW COLUMNS.

• NUMERIC_SCALE -- shows, for a column with a numeric data type, the column's defined scale;
otherwise NULL. This column provides some of the same information as the TYPE column
returned by SHOW COLUMNS.

• CHARACTER_SET_NAME -- shows, for a column with a character string data type, the
column's default character set; otherwise NULL. SHOW COLUMNS has no equivalent column,
but a column's default character set can be derived from the first part of the value shown in the
SHOW COLUMNS COLLATION column -- e.g., if COLLATION shows "latin1_swedish_ci", the
character set is the name shown prior to the first underscore ("latin1") and the rest of the value is
the collation name.

• COLLATION_NAME -- shows, for a column with a character string data type, the column's
default collation; otherwise NULL. SHOW COLUMNS has no equivalent column, but the column's
default collation can be derived from the final part of the value shown in the SHOW COLUMNS
COLLATION column.

• COLUMN_TYPE -- shows the column's defined data type in full. This column provides the same
information as the TYPE column returned by SHOW COLUMNS and is not part of the standard
SQL definition. It was added to provide complete equivalence with SHOW COLUMNS.

• COLUMN_KEY -- shows whether the column is indexed; either 'PRI' if the column is part of a
PRIMARY KEY, 'UNI' if the column is part of a UNIQUE key, 'MUL' if the column is part of an
index key that allows duplicates, or blank if the column is not indexed. This column provides the
same information as the KEY column returned by SHOW COLUMNS and is not part of the
standard SQL definition. It was added to provide complete equivalence with SHOW COLUMNS.

• EXTRA -- shows any additional column definition information, e.g., whether the column was
defined with the AUTO_INCREMENT attribute; otherwise left blank. This column provides the
same information as the EXTRA column returned by SHOW COLUMNS and is not part of the
standard SQL definition. It was added to provide complete equivalence with SHOW COLUMNS.

• PRIVILEGES -- shows the privileges available to the current user on the column. This column
provides the same information as the PRIVILEGES column returned by SHOW COLUMNS and is
not part of the standard SQL definition. It was added to provide complete equivalence with SHOW
COLUMNS.

• COLUMN_COMMENT -- shows the comment, if any, stored for this column; otherwise left
blank. This column provides the same information as the COMMENT column returned by SHOW
COLUMNS and is not part of the standard SQL definition. It was added to provide complete
equivalence with SHOW COLUMNS.

Here are two, roughly equivalent, commands:

 Copyright © 2005, MySQL AB Page 10

mysql> SELECT * FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE TABLE_NAME='t1'\G
************************* 1. row *************************
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: tp
 TABLE_NAME: t1
 COLUMN_NAME: col1
 ORDINAL_POSITION: 1
 COLUMN_DEFAULT:
 IS_NULLABLE: NO
 DATA_TYPE: int
CHARACTER_MAXIMUM_LENGTH: 11
 CHARACTER_OCTET_LENGTH: 11
 NUMERIC_PRECISION: 11
 NUMERIC_SCALE: 0
 CHARACTER_SET_NAME: NULL
 COLLATION_NAME: NULL
 COLUMN_TYPE: int(11)
 COLUMN_KEY: PRI
 EXTRA:
 PRIVILEGES: select,insert,update,references
 COLUMN_COMMENT:
************************* 2. row *************************
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: tp
 TABLE_NAME: t1
 COLUMN_NAME: col2
 ORDINAL_POSITION: 2
 COLUMN_DEFAULT: hello
 IS_NULLABLE: YES
 DATA_TYPE: char
CHARACTER_MAXIMUM_LENGTH: 10
 CHARACTER_OCTET_LENGTH: 10
 NUMERIC_PRECISION: NULL
 NUMERIC_SCALE: NULL
 CHARACTER_SET_NAME: latin1
 COLLATION_NAME: latin1_swedish_ci
 COLUMN_TYPE: char(10)
 COLUMN_KEY:
 EXTRA:
 PRIVILEGES: select,insert,update,references
 COLUMN_COMMENT:

 Copyright © 2005, MySQL AB Page 11

mysql> SHOW FULL COLUMNS FROM t1\G
************************* 1. row *************************
 Field: col1
 Type: int(11)
 Collation: NULL
 Null: NO
 Key: PRI
 Default:
 Extra:
Privileges: select,insert,update,references
 Comment:
************************* 2. row *************************
 Field: col2
 Type: char(10)
 Collation: latin1_swedish_ci
 Null: YES
 Key:
 Default: hello
 Extra:
Privileges: select,insert,update,references
 Comment:

KEY_COLUMN_USAGE Table

The standard SQL INFORMATION_SCHEMA.KEY_COLUMN_USAGE table shows the columns,
available to the current user, that are operated on by some constraint and/or that are part of an
index key. This table has no direct MySQL SHOW equivalent. KEY_COLUMN_USAGE has the
following columns:

• CONSTRAINT_CATALOG -- always shows NULL, since MySQL does not support the concept
of a database catalog.

• CONSTRAINT_SCHEMA -- shows the name of the schema (i.e., the database) in which an
available constraint or index resides.

• CONSTRAINT_NAME -- shows the name of a constraint or index on a table that the current
user may access.

• TABLE_CATALOG -- as with CONSTRAINT_CATALOG, always shows NULL.

• TABLE_SCHEMA -- shows the name of the schema in which the table that is operated on by
the available constraint or index resides.

• TABLE_NAME -- shows the name of the available table that is operated on by the constraint or
index.

• COLUMN_NAME -- shows the name of a column that is either all, or part of, the constraint or
index key.

• ORDINAL_POSITION -- shows the ordinal position of the column within the constraint or index
(not its position in the table to which it belongs).

 Copyright © 2005, MySQL AB Page 12

• POSITION_IN_UNIQUE_CONSTRAINT -- shows, for a foreign key column, the ordinal position
of the referenced column within the referenced unique index; otherwise NULL.

Here is an example:

mysql> SELECT * FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
 -> WHERE TABLE_NAME='t1'\G
************************* 1. row *************************
 CONSTRAINT_CATALOG: NULL
 CONSTRAINT_SCHEMA: tp
 CONSTRAINT_NAME: PRIMARY
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: tp
 TABLE_NAME: t1
 COLUMN_NAME: col1
 ORDINAL_POSITION: 1
POSITION_IN_UNIQUE_CONSTRAINT: NULL

ROUTINES Table

The standard SQL INFORMATION_SCHEMA.ROUTINES table shows the stored procedures --
both functions and procedures -- that may be executed by the current user. This table has no
SHOW equivalent; instead, it provides equivalent information to the MySQL-specific mysql.proc
table. ROUTINES has the following columns:

• SPECIFIC_NAME -- shows the name of a stored procedure (also known as a routine) that may
be executed by the current user. This column provides the same information as the
SPECIFIC_NAME column of the mysql.proc table.

• ROUTINE_CATALOG -- always shows NULL, since MySQL does not support the concept of a
database catalog. The mysql.proc table has no equivalent column.

• ROUTINE_SCHEMA -- shows the name of the schema (i.e., the database) in which the stored
procedure resides. This column provides the same information as the DB column of the
mysql.proc table.

• ROUTINE_NAME -- as with SPECIFIC_NAME, shows the name of the available stored
procedure. This column provides the same information as the NAME column of the mysql.proc
table.

• ROUTINE_TYPE -- shows whether the stored procedure is a 'PROCEDURE' or a 'FUNCTION'.
This column provides the same information as the TYPE column of the mysql.proc table.

• DTD_IDENTIFIER -- shows, for a function, the complete data type definition of the value the
function will return; otherwise NULL. This column provides the same information as the DATA
TYPE DESCRIPTOR column of the mysql.proc table.

• ROUTINE_BODY -- shows the language in which the stored procedure is written; currently
always 'SQL'. The mysql.proc table has no equivalent column.

• ROUTINE_DEFINITION -- shows as much of the routine body as is possible in the allotted
space. This column provides the same information as the BODY column of the mysql.proc table.

 Copyright © 2005, MySQL AB Page 13

• EXTERNAL_NAME -- always shows NULL since, currently, all MySQL stored procedures are
internal routines: they are stored in the database. The mysql.proc table has no equivalent column.

• EXTERNAL_LANGUAGE -- as with EXTERNAL_NAME, always shows NULL. This column
provides the same information as the LANGUAGE column of the mysql.proc table.

• PARAMETER_STYLE -- shows the routine's parameter style; always 'SQL'. The mysql.proc
table has no equivalent column.

• IS_DETERMINISTIC -- shows whether the routine is deterministic; either 'YES' or 'NO'. This
column provides the same information as the IS_DETERMINISTIC column of the mysql.proc
table.

• SQL_DATA_ACCESS -- shows the routine's defined sql-data-access clause value; either 'NO
SQL', 'CONTAINS SQL', 'READS SQL DATA', or 'MODIFIES SQL DATA'. This column provides
the same information as the SQL_DATA_ACCESS column of the mysql.proc table.

• SQL_PATH -- as with EXTERNAL_NAME, always shows NULL. The mysql.proc table has no
equivalent column.

• SECURITY_TYPE -- shows whether the routine's defined security_type is 'DEFINER' or
'INVOKER'. This column provides the same information as the SECURITY_TYPE column of the
mysql.proc table and is not part of the standard SQL definition. It was added to provide complete
equivalence with the mysql.proc table.

• CREATED -- shows the timestamp of the time the routine was created. This column provides
the same information as the CREATED column of the mysql.proc table.

• LAST_ALTERED -- shows the timestamp of the time the routine was last altered. This column
provides the same information as the MODIFIED column of the mysql.proc table.

• SQL_MODE -- shows the sql_mode setting at the time the routine was created. This column
provides the same information as the SQL_MODE column of the mysql.proc table and is not part
of the standard SQL definition. It was added to ensure that a stored procedure always runs using
the same sql_mode setting and to provide complete equivalence with the mysql.proc table.

• ROUTINE_COMMENT -- shows the comment, if any, defined for the routine; otherwise left
blank. This column provides the same information as the COMMENT column of the mysql.proc
table and is not part of the standard SQL definition. It was added to provide complete equivalence
with the mysql.proc table.

• DEFINER -- shows the user who created the routine. This column provides the same
information as the DEFINER column of the mysql.proc table and is not part of the standard SQL
definition. It was added to provide complete equivalence with the mysql.proc table.

 Copyright © 2005, MySQL AB Page 14

Here are two equivalent commands:

mysql> SELECT * FROM INFORMATION_SCHEMA.ROUTINES
 -> WHERE SPECIFIC_NAME='curdemo'\G
************************* 1. row *************************
 SPECIFIC_NAME: curdemo
 ROUTINE_CATALOG: NULL
 ROUTINE_SCHEMA: tp
 ROUTINE_NAME: curdemo
 ROUTINE_TYPE: PROCEDURE
 DTD_IDENTIFIER: NULL
 ROUTINE_BODY: SQL
ROUTINE_DEFINITION: BEGIN
 DECLARE done INT DEFAULT 0;
 ...
 CLOSE cur2;
END
 EXTERNAL_NAME: NULL
 EXTERNAL_LANGUAGE: NULL
 PARAMETER_STYLE: SQL
 IS_DETERMINISTIC: NO
 SQL_DATA_ACCESS: CONTAINS SQL
 SQL_PATH: NULL
 SECURITY_TYPE: DEFINER
 CREATED: 2005-02-03 13:24:59
 LAST_ALTERED: 2005-02-03 13:24:59
 SQL_MODE:
 ROUTINE_COMMENT:
 DEFINER: root@localhost

mysql> SELECT * FROM mysql.proc
 -> WHERE SPECIFIC_NAME='curdemo'\G
************************* 1. row *************************
 db: tp
 name: curdemo
 type: PROCEDURE
 specific_name: curdemo
 language: SQL
 sql_data_access: CONTAINS_SQL
is_deterministic: NO
 security_type: DEFINER
 param_list:
 returns:
 body: BEGIN
 DECLARE done INT DEFAULT 0;
 ...
 CLOSE cur2;
END
 definer: root@localhost
 created: 2005-02-03 13:24:59
 modified: 2005-02-03 13:24:59
 sql_mode:
 comment:

 Copyright © 2005, MySQL AB Page 15

SCHEMA_PRIVILEGES Table

The INFORMATION_SCHEMA.SCHEMA_PRIVILEGES table shows the schema privileges that
have been granted on all databases. SCHEMA_PRIVILEGES is not a standard SQL table, nor
does this table have a SHOW equivalent; instead, it provides equivalent information to the
MySQL-specific mysql.db table. SCHEMA_PRIVILEGES has the following columns:

• GRANTEE -- shows the user to whom a schema privilege has been granted. This column
provides the same information as the USER column of the mysql.db table.

• TABLE_CATALOG -- always shows NULL, since MySQL does not support the concept of a
database catalog. The mysql.db table has no equivalent column.

• TABLE_SCHEMA -- shows the name of a schema (i.e., a database) on which schema privileges
have been granted. This column provides the same information as the DB column of the mysql.db
table.

• PRIVILEGE_TYPE -- shows the privilege granted. This column provides the same information
as the *_PRIV columns of the mysql.db table.

• IS_GRANTABLE -- shows whether the privilege was granted WITH GRANT OPTION; either
'YES' or 'NO'. The mysql.db table has no equivalent column.

 Copyright © 2005, MySQL AB Page 16

Here are two equivalent commands:

mysql> SELECT * FROM INFORMATION_SCHEMA.SCHEMA_PRIVILEGES\G
************************* 1. row *************************
 GRANTEE: ''@'%'
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: test
PRIVILEGE_TYPE: SELECT
 IS_GRANTABLE: NO
************************* 2. row *************************
 GRANTEE: ''@'%'
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: test
PRIVILEGE_TYPE: INSERT
 IS_GRANTABLE: NO
************************* 3. row *************************
...
************************* 12. row *************************
 GRANTEE: ''@'%'
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: test
PRIVILEGE_TYPE: LOCK TABLES
 IS_GRANTABLE: NO
************************* 13. row *************************
 GRANTEE: ''@'%'
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: test
PRIVILEGE_TYPE: CREATE VIEW
 IS_GRANTABLE: NO
************************* 14. row *************************
 GRANTEE: ''@'%'
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: test
PRIVILEGE_TYPE: SHOW VIEW
 IS_GRANTABLE: NO

mysql> SELECT * FROM mysql.db\G
************************* 1. row *************************
 Host: %
 Db: test
 User:
 Select_priv: Y
 Insert_priv: Y
 Update_priv: Y
 Delete_priv: Y
 Create_priv: Y
 Drop_priv: Y
 Grant_priv: N
 References_priv: Y
 Index_priv: Y
 Alter_priv: Y
Create_tmp_table_priv: Y
 Lock_tables_priv: Y
 Create_view_priv: Y
 Show_view_priv: Y

 Copyright © 2005, MySQL AB Page 17

SCHEMATA Table

The standard SQL INFORMATION_SCHEMA.SCHEMATA table shows the schemas that may be
accessed by the current user. The MySQL-specific SHOW equivalent is SHOW DATABASES.
SCHEMATA has the following columns:

• CATALOG_NAME -- always shows NULL, since MySQL does not support the concept of a
database catalog. SHOW DATABASES has no equivalent column.

• SCHEMA_NAME -- shows the name of a schema (i.e., a database) which the current user may
use. This column provides the same information as the DATABASE column returned by SHOW
DATABASES.

• DEFAULT_CHARACTER_SET_NAME -- shows the name of the database's default character
set. SHOW DATABASES has no equivalent column.

• SQL_PATH -- always shows NULL, since the MySQL server does not use this value to find the
database files. SHOW DATABASES has no equivalent column.

Here are two, roughly equivalent, commands:

mysql> SELECT * FROM INFORMATION_SCHEMA.SCHEMATA\G
************************* 1. row *************************
 CATALOG_NAME: NULL
 SCHEMA_NAME: information_schema
DEFAULT_CHARACTER_SET_NAME: utf8
 SQL_PATH: NULL
************************* 2. row *************************
 CATALOG_NAME: NULL
 SCHEMA_NAME: tp
DEFAULT_CHARACTER_SET_NAME: latin1
 SQL_PATH: NULL

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| tp |
+--------------------+

STATISTICS Table

The INFORMATION_SCHEMA.STATISTICS table shows the indexes on tables that may be
accessed by the current user. STATISTICS is not a standard SQL table, since the SQL Standard
does not deal with any physical database constructs such as indexes; the MySQL-specific SHOW
equivalent is SHOW INDEX. STATISTICS has the following columns:

• TABLE_CATALOG -- always shows NULL, since MySQL does not support the concept of a
database catalog. SHOW INDEX has no equivalent column.

• TABLE_SCHEMA -- shows the name of a schema (i.e., a database) in which an indexed table
available to the current user resides. SHOW INDEX has no equivalent column.

 Copyright © 2005, MySQL AB Page 18

• TABLE_NAME -- shows the name of an indexed table which the current user may access (i.e.,
on which the current user has been granted a privilege). This column provides the same
information as the TABLE column returned by SHOW INDEX.

• NON_UNIQUE -- shows whether the index may contain duplicate values; '0' (zero) if it cannot,
'1' (one) if it can. This column provides the same information as the NON_UNIQUE column
returned by SHOW INDEX.

• INDEX_SCHEMA -- shows the name of the schema in which the index on this table resides.
SHOW INDEX has no equivalent column.

• INDEX_NAME -- shows the name of an index, on this table, which the current user may access.
This column provides the same information as the KEY_NAME column returned by SHOW
INDEX.

• SEQ_IN_INDEX -- shows the ordinal position of the indexed column within the index key. This
column provides the same information as the SEQ_IN_INDEX column returned by SHOW
INDEX.

• COLUMN_NAME -- shows the name of a column that comprises some, or all, of the index key.
This column provides the same information as the COLUMN_NAME column returned by SHOW
INDEX.

• COLLATION -- shows how this column is sorted in the index; either 'A' for ascending or NULL
for unsorted columns. This column provides the same information as the COLLATION column
returned by SHOW INDEX.

• CARDINALITY -- shows the number of unique values in the index. This column provides the
same information as the CARDINALITY column returned by SHOW INDEX.

• SUB_PART -- shows the number of indexed characters if the index is a prefix index; otherwise
NULL. This column provides the same information as the SUB_PART column returned by SHOW
INDEX.

• PACKED -- shows how the index key is packed; NULL if the key is not packed. This column
provides the same information as the PACKED column returned by SHOW INDEX.

• NULLABLE -- shows whether this indexed column may contain NULL values; values are either
'YES', 'NO', or (for versions prior to 5.0.3) a blank (which means 'NO'). This column provides the
same information as the NON_UNIQUE column returned by SHOW INDEX.

• INDEX_TYPE -- shows the index type; either 'BTREE', 'FULLTEXT', 'HASH', or 'RTREE'. This
column provides the same information as the INDEX_TYPE column returned by SHOW INDEX.

• COMMENT -- shows the comment, if any, stored for this index; otherwise left blank. This column
provides the same information as the COMMENT column returned by SHOW INDEX.

 Copyright © 2005, MySQL AB Page 19

Here are two equivalent commands:

mysql> SELECT * FROM INFORMATION_SCHEMA.STATISTICS
 -> WHERE TABLE_SCHEMA='tp'\G
************************* 1. row *************************
TABLE_CATALOG: NULL
 TABLE_SCHEMA: tp
 TABLE_NAME: t1
 NON_UNIQUE: 0
 INDEX_SCHEMA: tp
 INDEX_NAME: PRIMARY
 SEQ_IN_INDEX: 1
 COLUMN_NAME: col1
 COLLATION: A
 CARDINALITY: 0
 SUB_PART: NULL
 PACKED: NULL
 NULLABLE:
 INDEX_TYPE: BTREE
 COMMENT:

mysql> SHOW INDEX FROM t1\G
************************* 1. row *************************
 Table: t1
 Non_unique: 0
 Key_name: PRIMARY
Seq_in_index: 1
 Column_name: col1
 Collation: A
 Cardinality: 0
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:

TABLE_CONSTRAINTS Table

The standard SQL INFORMATION_SCHEMA.TABLE_CONSTRAINTS table shows the tables,
available to the current user, which are operated on by some constraint and/or index. This table
has no direct SHOW equivalent. TABLE_CONSTRAINTS has the following columns:

• CONSTRAINT_CATALOG -- always shows NULL, since MySQL does not support the concept
of a database catalog.

• CONSTRAINT_SCHEMA -- shows the name of the schema (i.e., the database) in which an
available constraint or index resides.

• CONSTRAINT_NAME -- shows the name of the constraint or index that operates on a table that
the current user may access.

 Copyright © 2005, MySQL AB Page 20

• TABLE_SCHEMA -- shows the name of the schema in which the table that is operated on by
this constraint or index resides.

• TABLE_NAME -- shows the name of the available table that is operated on by this constraint or
index.

• CONSTRAINT_TYPE -- shows the type of the constraint; either 'PRIMARY KEY', 'FOREIGN
KEY', or 'UNIQUE'. This column provides basically the same information as the KEY_NAME
column returned by SHOW INDEX, when NON_UNIQUE is '0' (zero).

Here is an example:

mysql> SELECT * FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS
 -> WHERE TABLE_NAME='t1'\G
************************* 1. row *************************
CONSTRAINT_CATALOG: NULL
 CONSTRAINT_SCHEMA: tp
 CONSTRAINT_NAME: PRIMARY
 TABLE_SCHEMA: tp
 TABLE_NAME: t1
 CONSTRAINT_TYPE: PRIMARY KEY

TABLE_PRIVILEGES Table

The standard SQL INFORMATION_SCHEMA.TABLE_PRIVILEGES table provides information
on every table privilege granted for the current database. This table has no direct MySQL SHOW
equivalent; instead, the information provided comes from a combination of the results returned by
SHOW GRANTS and SHOW FULL COLUMNS. TABLE_PRIVILEGES has the following columns:

• GRANTEE -- shows the name of a user who has been granted a table privilege.

• TABLE_CATALOG -- always shows NULL, since MySQL does not support the concept of a
database catalog.

•TABLE_SCHEMA -- shows the name of the schema (i.e., the database) in which the table for
which a privilege has been granted resides.

• TABLE_NAME -- shows the name of the table on which the privilege has been granted.

• PRIVILEGE_TYPE -- shows the type of privilege that was granted: either 'SELECT', 'INSERT',
'UPDATE', 'DELETE', 'REFERENCES', 'ALTER', 'INDEX', 'DROP', or 'CREATE VIEW'.

• IS_GRANTABLE -- shows whether the privilege was granted WITH GRANT OPTION; either
'YES' or 'NO'.

 Copyright © 2005, MySQL AB Page 21

Here is an example:

mysql> SELECT * FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES\G
************************* 1. row *************************
 GRANTEE: 'TRUDY'@'%'
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: tp
 TABLE_NAME: T1
PRIVILEGE_TYPE: SELECT
 IS_GRANTABLE: NO
************************* 2. row *************************
 GRANTEE: 'TRUDY'@'%'
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: tp
 TABLE_NAME: T1
PRIVILEGE_TYPE: INSERT
 IS_GRANTABLE: NO
************************* 3. row *************************
 GRANTEE: 'TRUDY'@'%'
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: tp
 TABLE_NAME: T1
PRIVILEGE_TYPE: UPDATE
 IS_GRANTABLE: NO
...

TABLES Table

The standard SQL INFORMATION_SCHEMA.TABLES table shows the base tables and views
that are available to the current user and provides equivalent information to the MySQL-specific
SHOW TABLE STATUS statement. TABLES has the following columns:

• TABLE_CATALOG -- always shows NULL, since MySQL does not support the concept of a
database catalog. SHOW TABLE STATUS has no equivalent column.

• TABLE_SCHEMA -- shows the name of the schema (i.e., the database) in which an available
table resides. SHOW TABLE STATUS has no equivalent column.

• TABLE_NAME -- shows the name of a table which the current user may access (i.e., on which
the current user has been granted a privilege). This column provides the same information as the
NAME column returned by SHOW TABLE STATUS.

• TABLE_TYPE -- shows whether this table is a 'BASE TABLE', a 'TEMPORARY' table, or a
'VIEW'. This column provides the same information as the TYPE column returned by SHOW
TABLE.

• ENGINE -- shows the storage engine used for this table. This column provides the same
information as the ENGINE column returned by SHOW TABLE STATUS and is not part of the
standard SQL definition. It was added to provide complete equivalence with SHOW TABLE
STATUS.

• VERSION -- shows the version number of this table's .frm file. This column provides the same
information as the VERSION column returned by SHOW TABLE STATUS and is not part of the

 Copyright © 2005, MySQL AB Page 22

standard SQL definition. It was added to provide complete equivalence with SHOW TABLE
STATUS.

• ROW_FORMAT -- shows this table's row storage format; either 'FIXED', 'DYNAMIC', or
'COMPRESSED'. This column provides the same information as the ROW_FORMAT column
returned by SHOW TABLE STATUS and is not part of the standard SQL definition. It was added
to provide complete equivalence with SHOW TABLE STATUS.

• TABLE_ROWS -- shows the number of rows in this table. This column provides the same
information as the ROWS column returned by SHOW TABLE STATUS and is not part of the
standard SQL definition. It was added to provide complete equivalence with SHOW TABLE
STATUS.

• AVG_ROW_LENGTH -- shows the average length of this table's rows. This column provides the
same information as the AVG_ROW_LENGTH column returned by SHOW TABLE STATUS and
is not part of the standard SQL definition. It was added to provide complete equivalence with
SHOW TABLE STATUS.

• DATA_LENGTH -- shows the length of this table's data file. This column provides the same
information as the DATA_LENGTH column returned by SHOW TABLE STATUS and is not part of
the standard SQL definition. It was added to provide complete equivalence with SHOW TABLE
STATUS.

• MAX_DATA_LENGTH -- shows the maximum length of this table's data file. This column
provides the same information as the MAX_DATA_LENGTH column returned by SHOW TABLE
STATUS and is not part of the standard SQL definition. It was added to provide complete
equivalence with SHOW TABLE STATUS.

• INDEX_LENGTH -- shows the length of the index file associated with this table. This column
provides the same information as the INDEX_LENGTH column returned by SHOW TABLE
STATUS and is not part of the standard SQL definition. It was added to provide complete
equivalence with SHOW TABLE STATUS.

• DATA_FREE -- shows the number of allocated unused bytes for this table. This column
provides the same information as the DATA_FREE column returned by SHOW TABLE STATUS
and is not part of the standard SQL definition. It was added to provide complete equivalence with
SHOW TABLE STATUS.

• AUTO_INCREMENT -- shows the next AUTO_INCREMENT value where applicable; otherwise
NULL. This column provides the same information as the AUTO_INCREMENT column returned
by SHOW TABLE STATUS and is not part of the standard SQL definition. It was added to provide
complete equivalence with SHOW TABLE STATUS.

• CREATE_TIME -- shows the timestamp of the time this table was created. This column provides
the same information as the CREATE_TIME column returned by SHOW TABLE STATUS and is
not part of the standard SQL definition. It was added to provide complete equivalence with SHOW
TABLE STATUS.

• UPDATE_TIME -- shows the timestamp of the time this table's data file was last updated. This
column provides the same information as the UPDATE_TIME column returned by SHOW TABLE
STATUS and is not part of the standard SQL definition. It was added to provide complete
equivalence with SHOW TABLE STATUS.

• CHECK_TIME -- shows the timestamp of the time this table was last checked; NULL if the table
has never been checked. This column provides the same information as the CHECK_TIME

 Copyright © 2005, MySQL AB Page 23

column returned by SHOW TABLE STATUS and is not part of the standard SQL definition. It was
added to provide complete equivalence with SHOW TABLE STATUS.

• TABLE_COLLATION -- shows this table's default character set and collation combination. This
column provides the same information as the COLLATION column returned by SHOW TABLE
STATUS and is not part of the standard SQL definition. It was added to provide complete
equivalence with SHOW TABLE STATUS.

• CHECKSUM -- shows the live checksum value for the table if any; otherwise NULL. This column
provides the same information as the CHECKSUM column returned by SHOW TABLE STATUS
and is not part of the standard SQL definition. It was added to provide complete equivalence with
SHOW TABLE STATUS.

• CREATE_OPTIONS -- shows any additional options used in the table's definition; otherwise left
blank. This column provides the same information as the CREATE_OPTIONS column returned
by SHOW TABLE STATUS and is not part of the standard SQL definition. It was added to provide
complete equivalence with SHOW TABLE STATUS.

• TABLE_COMMENT -- shows the comment, if any, stored for this table; otherwise left blank. This
column provides the same information as the COMMENT column returned by SHOW TABLE
STATUS and is not part of the standard SQL definition. It was added to provide complete
equivalence with SHOW TABLE STATUS.

Here are two equivalent commands:

mysql> SELECT * FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_NAME='t1'\G
************************* 1. row *************************
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: tp
 TABLE_NAME: t1
 TABLE_TYPE: BASE TABLE
 ENGINE: MyISAM
 VERSION: 9
 ROW_FORMAT: Fixed
 TABLE_ROWS: 1
 AVG_ROW_LENGTH: 15
 DATA_LENGTH: 15
MAX_DATA_LENGTH: 64424509439
 INDEX_LENGTH: 2048
 DATA_FREE: 0
 AUTO_INCREMENT: NULL
 CREATE_TIME: 2005-02-08 15:43:05
 UPDATE_TIME: 2005-02-09 11:35:13
 CHECK_TIME: NULL
TABLE_COLLATION: latin1_swedish_ci
 CHECKSUM: NULL
 CREATE_OPTIONS:
 TABLE_COMMENT:

 Copyright © 2005, MySQL AB Page 24

mysql> SHOW TABLE STATUS LIKE 't1%'\G
************************* 1. row *************************
 Name: t1
 Engine: MyISAM
 Version: 9
 Row_format: Fixed
 Rows: 1
 Avg_row_length: 15
 Data_length: 15
Max_data_length: 64424509439
 Index_length: 2048
 Data_free: 0
 Auto_increment: NULL
 Create_time: 2005-02-08 15:43:05
 Update_time: 2005-02-09 11:35:13
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:

USER_PRIVILEGES Table

The INFORMATION_SCHEMA.USER_PRIVILEGES table provides information on every user
who has privileges on the current database. USER_PRIVILEGES is not a standard SQL table,
nor does this table have a SHOW equivalent; instead, it provides equivalent information to the
MySQL-specific mysql.user table. USER_PRIVILEGES has the following columns:

• GRANTEE -- shows the user to whom a privilege has been granted. This column provides the
same information as the HOST and USER columns of the mysql.user table.

• TABLE_CATALOG -- always shows NULL, since MySQL does not support the concept of a
database catalog. The mysql.user table has no equivalent column.

• PRIVILEGE_TYPE -- shows the privilege granted. This column provides the same information
as the *_PRIV columns of the mysql.user table.

• IS_GRANTABLE -- shows whether the privilege was granted WITH GRANT OPTION; either
'YES' or 'NO'. The mysql.user table has no equivalent column.

 Copyright © 2005, MySQL AB Page 25

Here are two, roughly equivalent, commands:

mysql> SELECT * FROM INFORMATION_SCHEMA.USER_PRIVILEGES\G
*************************** 1. row ***************************
 GRANTEE: 'root'@'localhost'
 TABLE_CATALOG: NULL
PRIVILEGE_TYPE: SELECT
 IS_GRANTABLE: YES
*************************** 2. row ***************************
 GRANTEE: 'root'@'localhost'
 TABLE_CATALOG: NULL
PRIVILEGE_TYPE: INSERT
 IS_GRANTABLE: YES
*************************** 3. row ***************************
 GRANTEE: 'root'@'localhost'
 TABLE_CATALOG: NULL
PRIVILEGE_TYPE: UPDATE
 IS_GRANTABLE: YES
*************************** 4. row ***************************
 GRANTEE: 'root'@'localhost'
 TABLE_CATALOG: NULL
PRIVILEGE_TYPE: DELETE
 IS_GRANTABLE: YES
*************************** 5. row ***************************
 GRANTEE: 'root'@'localhost'
 TABLE_CATALOG: NULL
PRIVILEGE_TYPE: CREATE
 IS_GRANTABLE: YES
*************************** 6. row ***************************
...

 Copyright © 2005, MySQL AB Page 26

mysql> SELECT * FROM mysql.user\G
*************************** 1. row ***************************
 Host: localhost
 User: root
 Password:
 Select_priv: Y
 Insert_priv: Y
 Update_priv: Y
 Delete_priv: Y
 Create_priv: Y
 Drop_priv: Y
 Reload_priv: Y
 Shutdown_priv: Y
 Process_priv: Y
 File_priv: Y
 Grant_priv: Y
 References_priv: Y
 Index_priv: Y
 Alter_priv: Y
 Show_db_priv: Y
 Super_priv: Y
Create_tmp_table_priv: Y
 Lock_tables_priv: Y
 Execute_priv: Y
 Repl_slave_priv: Y
 Repl_client_priv: Y
 Create_view_priv: Y
 Show_view_priv: Y
 ssl_type:
 ssl_cipher:
 x509_issuer:
 x509_subject:
 max_questions: 0
 max_updates: 0
 max_connections: 0
*************************** 2. row ***************************
...

VIEWS Table

The standard SQL INFORMATION_SCHEMA.VIEWS table shows the views that are available to
the current user. This table has no direct MySQL SHOW equivalent. VIEWS has the following
columns:

• TABLE_CATALOG -- always shows NULL, since MySQL does not support the concept of a
database catalog.

• TABLE_SCHEMA -- shows the name of the schema (i.e., the database) in which an available
view resides.

• TABLE_NAME -- shows the name of a view which the current user may access (i.e., on which
the current user has been granted a privilege).

 Copyright © 2005, MySQL AB Page 27

• VIEW_DEFINITION -- shows the SELECT statement that makes up this view's definition. This
information is equivalent to that provided by the CREATE VIEW column of SHOW CREATE
VIEW.

• CHECK_OPTION -- shows the value of the WITH CHECK OPTION clause used to define the
view; either 'NONE', 'LOCAL', or 'CASCADED'.

• IS_UPDATABLE -- shows whether the view is an updatable view; either 'YES' or 'NO'.

Here is an example:

mysql> SELECT * FROM INFORMATION_SCHEMA.VIEWS
 -> WHERE TABLE_NAME='v1'\G
************************* 1. row *************************
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: tp
 TABLE_NAME: v1
VIEW_DEFINITION: select `tp`.`t1`.`col1` AS `col1`,`tp`.`t1`.`col2`
 AS `col2` from `tp`.`t1`
 CHECK_OPTION: NONE
 IS_UPDATABLE: YES

Bugs and Feature Requests

MySQL 5.0 was not a production release version at the time this book was written, so some
aspects of the INFORMATION_SCHEMA implementation were incomplete. This section provides
some information on bugs and features outstanding when we went to press.

Bugs

To get current details on outstanding INFORMATION_SCHEMA bugs, go to the following web
page and search for "information_schema" or "information":
http://bugs.mysql.com

Feature Requests

There were no feature requests outstanding at the time of writing.

Resources

For my last act I'll show you where you can go for further information.

Source Code

sql/sql_db.cc
sql/sql_parse.cc
sql/sql_show.cc

 Copyright © 2005, MySQL AB Page 28

http://bugs.mysql.com/

sql/mysql_priv.h
sql/table.h
mysql-test/t/information_schema.test
mysql-test/t/information_schema_inno.test

As always with MySQL, you can download our source code and see how Sergey did it. The main
programs for INFORMATION_SCHEMA are sql_db.cc and sql_show.cc. Other interesting files
are information_schema_inno.test and information_schema.test, which will give you an idea of
how thorough our test suite is.

Conclusion

You've come to the end of the book. I don't bother with a review or an index, since I'm sure you've
had no trouble memorizing it all.

If you enjoyed this book, you should look for others in the "MySQL 5.0 New Features" series. The
previous books talk about "Stored Procedures", "Triggers", and "Views".

Thank you very much for your attention. If you have any comments about this book, please send
them to one of the MySQL forums at:
http://forums.mysql.com

About MySQL

MySQL AB develops and supports a family of high performance, affordable database servers and
tools. The company's flagship product is MySQL, the world's most popular open source database,
with more than six million active installations. Many of the world's largest organizations, including
Yahoo!, Sabre Holdings, The Associated Press, Suzuki and NASA are realizing significant cost
savings by using MySQL to power high-volume Web sites, business-critical enterprise
applications and packaged software.

With headquarters in Sweden and the United States – and operations around the world – MySQL
AB supports both open source values and corporate customers' needs in a profitable, sustainable
business. For more information about MySQL, please visit www.mysql.com.

 Copyright © 2005, MySQL AB Page 29

http://www.mysql.com/

	MySQL 5.0 New Features Series – Part 4
	A MySQL® Technical White Paper

	T
	Conventions and Styles
	Terminology Notes

	Using INFORMATION_SCHEMA
	Privileges

	The Tables
	CHARACTER_SETS Table
	COLLATIONS Table
	COLLATION_CHARACTER_SET_APPLICABILITY Table
	COLUMN_PRIVILEGES Table
	COLUMNS Table
	�
	KEY_COLUMN_USAGE Table
	�
	ROUTINES Table
	SCHEMA_PRIVILEGES Table
	SCHEMATA Table
	STATISTICS Table
	TABLE_CONSTRAINTS Table
	TABLE_PRIVILEGES Table
	TABLES Table
	USER_PRIVILEGES Table
	VIEWS Table

	Bugs and Feature Requests
	Bugs
	Feature Requests

	Resources
	Source Code

	Conclusion
	About MySQL

